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Abstract

Satellite-based data provide wide unprecendent geographic and temporal coverage with high

spatial resolution at relatively low financial cost. They have therefore been increasingly used in

research and policy. However, errors in the classification techniques typically used to process

these data can lead to misleading conclusions about transitions processess (e.g., deforestation,

urbanization, and industrialization). In this paper, we propose a correction for transition es-

timates based on a hidden Markov model (HMM) to extract the signal (truth) from its noisy

measurement (satellite-based classifications). We discuss the conditions for identification for-

mally, and show that the proposed correction produces consistent estimates of transition rates

using simulations and a high-quality validation dataset, whereas estimates that do not account

for the classification errors are severely biased. An attractive feature of our approach is that no

ground-level truth data is required to implement the correction.
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1 Introduction

In recent years, publicly available satellite-based data combined with increasingly sophisticated

machine learning algorithms have provided unprecendented access to regional and global estimates

of Earth’s surface composition.1 Compared to other data sources, remote sensing data have the

advantages of providing a relatively low cost of accessing information that is difficult to obtain by

other means, a high spatial resolution, and wide geographic and temporal coverages (Donaldson

and Storeygard, 2016). Not surprisingly, they have been used widely – and increasingly – across a

number of research fields, including economics, geography, biology, ecology, and political science,

as well as being used in setting policy.2

However, image classification techniques, which are used to convert the spectral signature of

a pixel into an interpretable category, can lead to non-negligible misclassifications and bias areal

estimates (Czaplewski, 1992). These classification errors can also affect estimates of the transition

processes of outcomes of interest – our focus in this paper. Intuitively, errors in classifications

may result in excessive transitions. For example, much of the apparent land cover change in

satellite-based data may be the result of misclassifications (Abercrombie and Friedl, 2016), which

may undermine calculations of carbon stock cycles and the establishment of efficient preservation

policies. Similarly, errors in satellite-based measures of pollution can lead to misleading information

about pollution trends in different geographic areas and adversely affect air-quality regulations.3

To mitigate these concerns, researchers typically impose a set of heuristic and ad-hoc adjust-

ments to stabilize classifications across years. Yet, Friedl et al. (2010) provide strong evidence that

typical heuristic adjustments do not eliminate excessive transitions in land use. An alternative

solution is to correct classification errors using validation data that can be treated as ground truth.

But extensive validation data are expensive to obtain and extremely scarce in practice (Goldblatt

et al., 2016), and even when validation data exists, there may be few observations available, which

limits the accuracy of the estimates.

1At the moment, there are approximately 5,000 satellites orbiting our planet, according to the Index of Objects
Launched into Outer Space (http://www.unoosa.org/oosa/en/spaceobjectregister/index.html).

2Economists have been using satellite data to study crop choices and agricultural productivity (Holmes and Lee,
2009; Scott, 2013; Kudamatsu et al., 2016), climate change (Costinot et al., 2016), natural resources and deforestation
(Burgess et al., 2012; Assunção et al., 2019), intensity and distribution of economic activities (Henderson et al., 2012;
Nordhaus and Chen, 2014), urbanization and market boundaries (Goldblatt et al., 2018; Baragwanath et al., 2019),
investments in housing innovation and poverty (Henderson et al., 2016; Marx et al., 2019), pollution and health
outcomes (Fowlie et al., 2019), civil wars (Alix-Garcia et al., 2013), and the political economy of regional development
(Gennaioli et al., 2012; Michalopoulos and Papaioannou, 2013), among many others. Geographers, biologists, and
ecologists have also explored remote-sensing data to investigate land cover and degradation, terrestrial and marine
ecosystems, biodiversity, and carbon emissions and carbon sequestration (Foley et al., 2005; Bonan, 2008; Geller
et al., 2017).

3Fowlie et al. (2019) show that satellite-based measurement errors in pollution can lead to over-regulation in
“clean” areas and under-regulation in “dirty” areas. We focus in this paper on the changes over time.
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In this paper we propose a different approach. We present a hidden Markov model (HMM)

that corrects for misclassification bias in satellite-based transition probabilities. A hidden Markov

model is the combination of an unobserved Markov process with observations that depend only on

the contemporaneous hidden state. For instance, when studyng land use changes, the ground truth

land use is the hidden state and remote sensor-based classifications are the observations.4 The idea

here is to extract the signal (truth) from its noisy measurement (satellite-based classifications). The

framework assumes that researchers either have access to a panel data (with at least three time

periods) of satellite-based classifications, or that they can generate such classifications themselves

using remotely sensed data. An attractive feature of our approach is that no ground-level truth

data is required to implement the correction.

Based on Hu’s seminal work on non-classical measurement error (summarized in Hu (2017)), we

show how the HMM assumptions allow us to uniquely recover both the true transition probabilities

and the misclassification probabilities from the observed data. The required assumptions (fully

discussed below in Section 2) are not very restrictive in practice; some of them are testable, which

means researchers can verify them in particular cases.5 We propose two different estimators for

the hidden Markov model: A minimum distance (MD) estimator, that builds directly from the

constructive identification results; and a maximum likelihood (ML) estimator, which is implemented

based on the expectation-maximization (EM) algorithm (van Handel, 2008).

We investigate the performance of our strategy based on a Monte Carlo simulation study, and

on rich longitudinal ground-level validation data. In the Monte Carlo study, we find that the HMM

method estimates transition probabilities and misclassification probabilities accurately, including

cases where the transition probabilities are time-varying. We also document important trade-offs

between the two estimators: While the MD estimator is substantially faster, the ML estimator

performs better in terms of mean-square errors and is less likely to result in estimates of transition

probabilities that are at the edge of the unit interval [0, 1].

We also perform a validation exercise using a unique ground-level truth longitudinal data pro-

duced by the Brazilian Agricultural Research Corporation (Embrapa). The data set contain in-

formation on land use in various private farmlands in the state of Mato Grosso, Brazil, from 2006

to 2010.6 The state of Mato Grosso provides an interesting setting because it is a major center

4Hidden Markov models are used in many applications in which only imperfect measurements are available for
some time-varying value of interest. See McLachlan and Peel (2000), chapter 13, for a textbook overview.

5For instance, we assume that misclassification in year t does not affect the probability of misclassification in
year t + 1, after conditioning on the true state in both years. This assumption would not be appropriate when using
algorithms that explicitly rely on past classifications to generate the current year’s classification, but it is arguably
plausible when classifications have been generated separately for each year of data, as is common in practice.

6We use “land use” and “land cover” interchangeably in this paper. For details about the data set, see Coutinho
et al. (2011) and Brown et al. (2013). While Brown et al. (2013) use that data to obtain substantial progress towards
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of agricultural production within Brazil’s Legal Amazon (a bio-administrative unit covering the

Brazilian Amazon biome) and because of the rapid land use change there due to agricultural de-

velopment – factors that have attracted considerable attention from researchers and policy makers.

This data is unprecedented in spatial and temporal coverage for the state – and arguably in general,

given that longitudinal validation data are particularly difficult to obtain; typically, validation data

are composed of a single or repeated cross-sections. Longitudinal ground-level data are crucial for

validating our HMM approach, as they allow us to observe true land use transition probabilities

and compare them to our estimates. As such the Embrapa data set provide a unique opportunity

to test the performance of the HMM correction in practice.

In the validation exercise, we begin by generating land use classifications from remote sensing

data from MODIS (which are regularly used to classify land cover around the globe), and using half

of the ground truth data as training data. We find that the MODIS-based classification performs

well in terms of the out-of-sample predictions (using the other half of the ground-level data as

the validation data): The misclassifications are small in magnitude and are comparable to other

validation studies. Then, we compare the transition probabilites estimated with no corrections

for misclassifications and estimates based on our HMM correction. When transition probabilities

are computed without correction for misclassifications, land use transition rates are substantially

greater than the transitions observed in the ground truth data: Estimated transitions are approx-

imately 54%–68% higher than the truth. In contrast, transition probabilities estimated using our

HMM approach match the transition probabilities observed in the validation data far more accu-

rately. Furthermore, the HMM correction estimates misclassification probabilities (surprisingly)

well too, as a by-product of the method.

The closest paper to ours is Abercrombie and Friedl (2016), who also consider an HMM-based

correction to errors in land use classifications. The main distinctions between our approaches

are the following: We link the HMM procedure to formal identification results based on a set of

explicit assumptions, providing transparent arguments for the conditions under which the approach

can and cannot be implemented; we propose consistent estimators for transitions; and we allow for

the estimation of time-varying transition probabilities from the data. Abercrombie and Friedl,

in contrast, do not provide formal conditions under which their HMM correction is expected to

be valid, and they use a model with inputed and time-invariant transition probabilities. We

believe that being able to handle time-varying transition probabilities flexibly is important in many

applications, e.g. when estimating how (and explaining why) deforestation processes may change

over time.

more refined crop-specific classification, we focus on land use transition estimates.
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This paper is organized as follows: Section 2 lays out the framework and the misclassification

problem; Section 3 investigates the use of validation data to correct misclassifications, and then

presents the hidden Markov model, followed by the HMM formal identification results; Section 4

describes the two estimation methods, the minimum distance estimator and the maximum likelihood

estimator; Section 5 presents the Monte Carlo simulation study; Section 6 describes the validation

exercise using ground-level truth data from Brazil’s Embrapa; and Section 7 concludes.7

2 Framework

In this section, we present the basic framework, a simple correction based on vaidadtion data,

the hidden Markov model, and the HMM identification results. Our running example is the land

use classification problem, but results can be applied to other classification problems using panel

remote-sensing data.

Let Sit ∈ S denote the ground truth land use at location i at time t. In our application,

a location is usually a pixel or a spatial point. The set of possible values that Sit can take is

S = {s1, ..., sK}, K < ∞. E.g., S may include forest, pasture, and different types of crops. In

our Embrapa validation exercise we use a binary state space S = {crops,pasture}. Extensions to

continuously distributed measurements, such as pollution or nighttime light, are possible, at the

cost of more burdensome notation and additional technical details.8 The true land use Sit is not

observed unless ground-level data is collected for i at t.

Suppose there exists an observable noisy measurement of Sit denoted by Yit ∈ Y = {y1, ..., yK}.

We assume the sets Y and S are equal, but we keep the distinction in the notation to facilitate

the presentation. In typical applications, Yit is the output of a classification algorithm that relies

on machine learning techniques to predict Sit given a vector of remote-sensing variables, Rit. For

example, Rit may be a vector including the vegetation index, as well as the reflectance patterns

of different wavelengths (infrared, red, blue, etc.) for pixel i at time period t. In other words, we

can take Yit = f (Rit), for some function f that depends on the data used and the classification

algorithm (see discussion below).

We assume the researcher has access to a longitudinal data of land use classifications

{Yit : i = 1, ..., N ; t = 1, ..., T}, obtained from remote-sensing data analysis (performed by the re-

searcher herself or by others). In practice, it is common to have a large set of spatial points N

7The Appendix presents (i) some mathematical derivations, (ii) details on the EM algorithm, and (iv) a stylized
exampe of how misclassifications in land use change may lead to mistakes in conservation policies. Codes for replicating
the Monte Carlo simulations are available at https://github.com/atorch/hidden markov model.

8For variables taking value on the real line, one needs to work with operators in Hilbert spaces, instead of matrices
in Euclidean spaces.
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and a small number of time periods. Under standard regularity conditions, longitudinal data on

Yit can then be used to estimate the transition probabilities Pr [Yit+1|Yit], as well as the marginal

distribution Pr [Yit], with high accuracy. Although not explicit in the notation, we consider the

analysis conditional on some set of observable covariates. For instance, the data may come from

different subregions of a larger region of interest; the estimation can therefore be done separately

for each subregion.9

For pixel i at time period t, the probability of observing a (satellite-based) land use prediction

Yit = y is given by

Pr [Yit = y] =
∑
s∈S

Pr [Yit = y|Sit = s] Pr [Sit = s] ,

where Pr [Yit = y|Sit = s] is the probability of observing land use y when the ground truth land use

is s. In matrix notation, we have

PYt = Υ PSt , (1)

where PYt is a K × 1 vector with elements Pr [Yit = yk], k = 1, ...,K; the K × 1 vector PSt has

elements Pr [Sit = sk]; and Υ is a K ×K matrix with Pr [Yit = yl|Sit = sk], for l, k = 1, ...,K. We

follow the literature and refer to the elements of Υ as misclassification probabilities, even though

it includes the probabilities of correct classifications on the diagonal, while the misclassification

probabilities are the off-diagonal terms. For now, we consider the case where Υ is time-invariant,

but we extend results for misclassifications that may change over time.

While the vector PYt can be estimated in the data using frequency estimators, it is not possible

to recover the true land use distribution PSt without additional information. Furthermore, there is

no guarantee that the observed (estimated) transition Pr [Yit+1|Yit] is close to the true transitions

Pr [Sit+1|Sit]. To illustrate the potential importance of misclassification problems, we present a

stylized exampe in the Appendix showing how misclassifications in land use may lead to inefficient

conservation policies (Appendix C).

3 Correcting Satellite-Based Misclassifications

We now consider two possible corrections for misclassified remote-sensing data. The first correction

is based on available validation data. The second one is based on our hidden Markov model

approach.

9Incorporating continously distributed covariates, such as slope and altitude, is more challenging. One can apply
standard kernel smoothing techniques, or parameterize the transition probability functions.
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3.1 Correction Based on Validation Data

Suppose we have access to a subset of validation points for which we observe both Yit and Sit,

i.e., {Yit, Sit : i = 1, ..., Ns; t = 1, ..., Ts}. Given such data, we can directly estimate Υ. In fact, it is

standard practice to split the sample into training and validation sets. Supervised classification al-

gorithms are applied to the training data to predict land uses. Predicted land uses are extrapolated

to the validation data and then compared to the ground-truth data. The comparison produces the

so-called “confusion matrix,” which is a matrix with the joint distribution Pr [Yit, Sit]. The matrix

Υ with the conditional probabilities can be obtained directly from the confusion matrix. We can

then recover the true land use shares provided the matrix Υ is invertible:

PSt = Υ−1PYt . (2)

In practice, we expect Υ to be invertible because land use classifications are often sufficiently

accurate to make the matrix diagonally dominant: Pr [Yit = s|Sit = s] is typically much larger than

50 percent, and hence larger than the probability of misclassification
∑

y 6=s Pr [Yit = y|Sit = s].

To verify whether the correction works in a particular case, we may split the validation dataset

in two. One subsample can be used to estimate Υ, and the other, to check whether the corrected

land use classification is indeed better than the original classification (see Czaplewski, 1992). As

discussed in the Introduction, a limitation of this approach is the potential lack of access to a

sufficiently rich validation data set, particularly if our goal is to estimate models that vary spatially,

e.g. by region. Moreover, if our goal is to estimate transition probabilities (rather than year-by-

year classifications), we need an approach that allows us to estimate more than just the marginal

probabilities Pr[Sit].
10

3.2 Correction Based on Hidden Markov Model Approach

We now turn to our proposed solution, which is based on Hu (2017). For each point i, we assume

the stochastic process {Yit, Sit : t = 1, 2, ...} follows a hidden Markov model (HMM). Specifically,

we assume ground truth land cover {Sit} follows a first-order Markov process with transition prob-

abilities Pr [Sit+1|Sit], while Yit+1 is independent of past values {Yit−j , Sit−j}, j ≥ 0, conditional

on Sit+1. The conditional independence assumption means that if we know the true land use, past

10To see why marginal probabilities are not enough to obtain transitions, take a binary case S = {s1, s2}. By the
Law of Total Probability,

Pr [Sit+1 = s1] = Pr [Sit+1 = s1|Sit = s1] Pr [Sit = s1] + Pr [Sit+1 = s1|Sit = s2] Pr [Sit = s2] .

Even though the marginals Pr [Sit+1] and Pr [Sit] are known, there is only one equation to identify two unknowns
Pr [Sit+1 = s1|Sit = s1] and Pr [Sit+1 = s1|Sit = s2].
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variables (Yit, Sit) do not contain any additional information about the noisy land-use classification

Yit+1. This is a common assumption in the measurement error literature (Bound et al., 2001).11

Formally,

Pr[Yit+1, Sit+1| {Yit−j , Sit−j}j≥0] = Pr [Yit+1|Sit+1]× Pr [Sit+1|Sit] . (3)

The HMM assumption is motivated by the fact that land use predictions Yit are typically a

function only of contemporaneous remote sensing data, Rit. If the process {Rit, Sit} satisfies the

HMM assumptions, then so must {f (Rit) , Sit} for any function f .12 The stochastic process is

summarized graphically in Figure 1, in which nodes represent random variables and edges indicate

statistical dependence.

Sit

Rit

Yit

Sit+1

Rit+1

Yit+1

Sit+2

Rit+2

Yit+2

. . .
PSt+1|St

PSt+2|St+1

Figure 1: Dependency Graph for HMM

Useful Identities. Given the HMM assumptions, there are a series of identities that are helpful

to obtain the identification results. For any two random variables X,W ∈ S, define the K × K

matrix MX,W with the joint distribution Pr [X = sl,W = sk], l, k = 1, ...,K. Similarly, for any

given y ∈ Y, define the matrix Myt+1,X,W , with elements Pr [Yit+1 = y,X = yl,W = yk], as well

as the diagonal matrix Dyt+1|X , with diagonal entries Pr [Yit+1 = y|X = sk]. Then, from the joint

11Note that the process {Yit} does not necessarily follow a first-order Markov process. We also assume the processes
are spatially independent: {Yit, Sit} ⊥⊥ {Yjt, Sjt} for i 6= j (where ⊥⊥ indicates probabilistic independence); extending
the model to allow for both spatial and time dependence is possible, but adds considerable complexity. We therefore
focus on temporal dependence within each spatial point.

12To see why, note that for any random variable Z, if Rit ⊥⊥ Z|Sit (in words, if Rit is conditionally independent of
Z given Sit), it follows that f(Rit) ⊥⊥ Z|Sit for any function f . In typical applications, the remotely-sensed data Rit

are complicated high-dimensional objects. In theory, we could fit an HMM model using the process {Rit, Sit}. We
opted for not doing so because the misclassification probabilities Pr[Yit|Sit] can be represented by a K ×K matrix,
which is a much simpler object than a continuous distribution over high-dimensional sensor data.
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distribution of (Yit, Yit−1) we obtain

MYt,Yt−1 = Υ MSt,Yt−1 . (4)

Similarly, from the joint distribution of (Yit+1, Yit) we get

MYt+1,Yt = Υ MSt+1,St Υᵀ, (5)

and, from the joint distribution of (Yit+1, Yit, Yit−1) ,

Myt+1,Yt,Yt−1 = Υ Dyt+1|St
MSt,Yt−1 . (6)

Identification and estimation of the HMM is based on (4)–(6). See the Appendix A for a derivation

of these equations.

3.2.1 Identification of the Hidden Markov Model

This subsection follows the identification results of Hu (2017). We adapt his general framework to

our land use model. The objective is to identify the Markov land use transition process Pr [Sit+1|Sit],

the initial distribution Pr [Sit], and the misclassification probabilities Υ using a longitudinal data

on Yit. Assume we have data for at least T ≥ 3 periods, and impose the following condition:

Condition 1. The matrix MYt,Yt−1 has full rank, i.e., rank
(
MYt,Yt−1

)
= K.

This condition is testable. If the land use classifications Yit are sufficiently persistent, MYt,Yt−1

may be strictly diagonally dominant, which results in a full rank matrix.13 The condition implies

that both matrices Υ and MSt,Yt−1 are invertible too (see equation (4)). Next, combining (4) and

(6), we get

Myt+1,Yt,Yt−1M
−1
Yt,Yt−1

= Υ Dyt+1|St
Υ−1. (7)

This is an eigenvalue-eigenvector decomposition of a matrix constructed entirely from observable

data, i.e., from Myt+1,Yt,Yt−1M
−1
Yt,Yt−1

. The columns of Υ are the eigenvectors. Because each column

of Υ must sum to one, the scale of the eigenvectors is fixed. The diagonal elements of Dyt+1|St
are

the eigenvalues. The next two assumptions guarantee a unique eigenvalue-eigenvector decompo-

sition. The uniqueness of the decomposition means we can uniquely recover the misclassification

13 This is easy to see in the 2× 2 example:

MYt,Yt−1 =

[
Pr [Yit = y1, Yit−1 = y1] Pr [Yit = y1, Yit−1 = y2]
Pr [Yit = y2, Yit−1 = y1] Pr [Yit = y2, Yit−1 = y2]

]
.

Note that for (observed) persistent processes, the diagonal terms are greater than the off-diagonal terms.
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probabilities Υ and the diagonal matrix Dyt+1|St
from the joint distribution of the observed classi-

fications (Yit+1, Yit, Yit−1).

Condition 2. Pr [Yit+1 = y|Sit = s] 6= Pr [Yit+1 = y|Sit = s′] for any given y ∈ Y whenever s 6= s′,

and s, s′ ∈ S.

Condition 2 assumes the eigenvalues are all distinct. This is testable: we only need to perform

the eigenvalue-eigenvector decomposition of Myt+1,Yt,Yt−1M
−1
Yt,Yt−1

and check it.

To interpret this condition, consider an example in which there are three land uses: forest,

pasture and crops. Take the observed y as forest. Suppose it is very likely to observe a forest

classification tomorrow (i.e. Yit+1 = forest) when today’s true land use is forest; moreover, suppose

it is very unlikely that we would observe forest tomorrow when today’s land use is pasture, and

even less likely to see forest tomorrow when today’s land use is crops (i.e., pasture and crops are

both persistent, but pasture is abandoned more often than cropland). In this case,

Pr [Yit+1 = y|Sit = forest] > Pr [Yit+1 = y|Sit = pasture] > Pr [Yit+1 = y|Sit = crops]

for y = forest. Condition 2 is then satisfied.14

Next we turn to the eigenvectors.

Condition 3. Pr [Yit = s∗|Sit = s∗] > Pr [Yit = s|Sit = s∗] for any s 6= s∗, and s, s∗ ∈ S.

Condition 3 fixes the order of the eigenvectors. It implies s∗ is the mode of the distribution

Pr [Yit|Sit = s∗]. In words, given that the true land use is s∗, the probability that the noisy measure

equals s∗ is greater than the probability that Yit equals any other land use s 6= s∗. This condition

is satisfied when Υ is strictly diagonally dominant; as previously mentioned, accurate land use

classifiers generate Υ that is diagonally dominant in practice.

Next, given identification of Υ, we identify the joint distribution Pr [Sit+1, Sit] under the as-

sumption that Υ is time-invariant. More specifically, we impose

Condition 4. Pr [Yit+1|Sit+1] = Pr [Yit|Sit].

14Condition 2 imposes assumptions on Pr [Yit+1|Sit]. Yet, because

Pr [Yit+1 = y|Sit = s] =
∑
s′∈S

Pr
[
Yit+1 = y|Sit+1 = s′

]
Pr
[
Sit+1 = s′|Sit = s

]
,

Condition 2 can be derived based on restrictions imposed on the primitives Pr [Yit+1|Sit+1] and Pr [Sit+1|Sit]. In case
the condition is violated for some y, we can use another land-use classification y′ 6= y for which the condition is valid.
If we find no such y, then identification is not guaranteed. On the other hand, when Condition 2 holds for more than
one value y, the model becomes overidentified. We can compute (7) for, say, y and y′, with y 6= y′, and check if we
obtain the same eigenvectors Υ.
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Given Condition 4 and equation (5), we obtain

MSt+1,St = Υ−1MYt+1,Yt (Υᵀ)−1 , (8)

which implies identification of MSt+1,St , and hence of both Pr [Sit+1|Sit] and Pr [Sit].

We conclude that it is possible to estimate misclassification probabilities and true land use

transition probabilities with no validation data, provided (a) we have access to a noisy classification

observed in at least three consecutive time periods, (b) the stochastic process {Yit, Sit : t = 1, 2, ...}

follows a hidden Markov model (HMM), and (c) Conditions 1–4 hold.

Theorem 1. (Hu, 2017). Suppose equation (3) and Conditions 1–4 hold. Then, the joint distri-

bution of the observed classifications (Yit+1, Yit, Yit−1) uniquely identifies Pr [Yit|Sit], Pr [Sit], and

Pr [Sit+1|Sit].

When Condition 4 is not satisfied, we need an additional time period to identify misclassification

probabilities at both t and t+ 1 (i.e. we would need at least T ≥ 4 periods of data).15

4 Estimators for the HMM Correction

In this section, we consider two estimators for the HMM correction: a minimum distance (MD)

estimator and a maximum likelihood (ML) estimator.

4.1 Minimum Distance Estimator

In principle, we can estimate the misclassification probabilities and the joint distribution of Sit using

a plug-in estimator based on equations (7)-(8). However, in our experience, based on simulation

exercises, the eigenvalue-eigenvector decomposition may result in estimated probabilities that are

negative or greater than 1 in some data sets. This is more likely to happen when the sample size is

small and the true parameters are close to 1 (e.g. transition probabilities of 0.99). For this reason,

it is better to implement a constrained minimum distance estimator.

15When both transition probabilities and misclassification probabilities vary by time, equation (7) becomes
Myt+1,Yt,Yt−1M−1

Yt,Yt−1
= Υt Dyt+1|St Υ−1

t , i.e. the misclassification probability matrices have the same time sub-

script and we still have an eigenvalue-eigenvector decomposition. However, because this version of equation (7) uses
Yt−1 and Yt+1 (in addition to Yt) to identify Υt, it follows that Υ1 and ΥT are not identified. Equation (8) becomes
MSt+1,St = Υ−1

t+1MYt+1,Yt (Υᵀ
t )−1, and hence we cannot identify the first and last transition matrices.
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Formally, for some y ∈ Y, define the functions

g1yt (M,Υ) =
∥∥∥Myt+2,Yt+1,YtM

−1
Yt+1,Yt

Υ−ΥDyt+2|St+1

∥∥∥
g2t (M,Υ) =

∥∥MYt+1,Yt −ΥMtΥ
ᵀ
∥∥ , (9)

where ‖·‖ is a matrix norm. Notice that g1yt is analogous to equation (7) with slight rearrangement,

while g2t is analogous to equation (8). To simplify notation, we consider MSt+1,St = Mt for all t,

and collect all matrices into M = {Mt : t = 1, ...T − 1}. We omit Dyt+2|St+1
as an argument to g1yt

because it is a function of Υ and MSt+2,St+1 .

Let g1 be a vector that stacks g1yt for all t ∈ {1, . . . , T − 2}; and let g2 be a vector that

stacks g2t for all t ∈ {1, . . . , T − 1}, where T ≥ 3. Define the vector g = (g′1, g
′
2)
′, and consider the

population criterion function Q (M,Υ) = g (M,Υ)ᵀ Wg (M,Υ) , where W is a symmetric positive-

definite weighting matrix. By construction, the true matrices (M,Υ) are the unique solution to

the following minimization problem:

min
M,Υ

g (M,Υ)ᵀ W g (M,Υ) , (10)

subject to each matrix entry being in [0, 1] and probabilities summing to 1.

The minimum distance estimator is the sample analog of (10):

(M̂, Υ̂) = arg min
M,Υ

ĝ (M,Υ)ᵀ W ĝ (M,Υ) , (11)

subject to the same constraints as above, and where ĝ is the same as (9), but replaces Myt+1,Yt,Yt−1 ,

MYt,Yt−1 , and MYt+1,Yt by their respective frequency estimators M̂yt+1,Yt,Yt−1 , M̂Yt,Yt−1 , and

M̂Yt+1,Yt . This is a standard minimum distance estimator defined over a finite-dimensional pa-

rameter space: under standard regularity conditions it is consistent and asymptotically normal

(Newey and McFadden, 1994). As usual, inference must be adjusted when parameters are at or

near the boundary (Andrews, 1999). When Condition 2 is satisfied for more than one value of

y ∈ Y, the vector g1yt may be augmented accordingly. When that happens, or when the data on

Yit has more than four time periods, T ≥ 4, the model becomes overidentified.

In general, if we estimate a model with K hidden land uses from T years of data, we have to

optimize over K + T K2 parameters subject to T K + 1 equality constraints.16

16The total number of parameters before accounting for constraints for T years is K (corresponding to the initial
distribution), plus (T − 1)K2 (corresponding to (T − 1) transition matrices), and K2 (the misclassification matrix).
The number of equality constraints is 1 (for the initial distribution), plus (T−1)K (for the T−1 transition probability
matrices), and K (for the time-invariant misclassification probabilities).
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4.2 Maximum Likelihood Estimator

Next, we consider a maximum likelihood estimator. Let Pr [Yi] be the joint distribution of Yi =

(Yi1, ..., YiT ) for a given point i. The log likelihood for i integrates-out the hidden states17

li = ln
∑

st∈S:t=1,...T

Pr [Yi1, ..., YiT , Si1 = s1, ..., SiT = sT ] , (12)

and the log likelihood function for the entire panel data is L =
∑N

i=1 li. The ML estimator

chooses the transition probabilities for Sit, the initial distribution of Sit, and the misclassification

probabilities that maximizes the function L. Because directly maximizing L is difficult, we follow

the literature and use the expectation-maximization (EM) algorithm (van Handel, 2008). See

Appendix B for more details.

Note that the combination of the initial distribution and the transition probabilities for Sit,

t ∈ {1, . . . , T − 1} in (12), carries the exact same information as the joint distributions
{
MSt+1,St

}
estimated using the MD estimator.

5 Monte Carlo Studies

In this section, we present Monte Carlo experiments to investigate the finite-sample properties of

the MD and EM estimators. First, we fix the parameters of the model (the initial distribution, the

transition probabilities, and the misclassification probabilities) and vary the sample size (i.e., the

number of grid points). Then, we fix the number of observations and evaluate how the estimator

performs at different true transition probabilities, misclassification probabilities, and with different

numbers of time periods.

5.1 Setup

We consider two land uses, S = {1, 2}, observed in T = 4 time periods. The initial distribution

over hidden states is

PS1 = (0.9, 0.1)′ ,

17For instance, under the HMM assumptions, we have for T = 3,

ln Pr [Yit+2, Yit+1, Yit] = ln
∑
s′′∈S

∑
s′∈S

∑
s∈S

Pr
[
Yit+1|Sit+1 = s′′

]
Pr
[
Sit+1 = s′′|Sit = s′

]
×Pr

[
Yit|Sit = s′

]
Pr
[
Sit = s′|Sit−1 = s

]
Pr [Yit−1|Sit−1 = s] Pr [Sit−1 = s] .
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where the initial share of land cover s = 1 is 0.9. The transition matrices are

P1 ≡ PS2|S1
=

0.96 0.04

0.02 0.98

 , P2 ≡ PS3|S2
=

 0.9 0.1

0.02 0.98

 , P3 ≡ PS4|S3
=

 0.8 0.2

0.02 0.98

 .

So the probability that a pixel i with land cover s = 1 in period t = 1 stays with the same land cover

in the next time period, t = 2, is Pr[Si2 = 1|Si1 = 1] = 0.96. The transition probability decreases to

Pr[Si3 = 1|Si2 = 1] = 0.9 in the next period t = 3, and decreases further to Pr[Si4 = 1|Si3 = 1] = 0.8

in the last period t = 4. To simplify, we keep the transitions for state s = 2 the same over time,

Pr[Sit+1 = 2|Sit = 2].

The misclassification probabilities are time-invariant and given by

Υ =

0.9 0.2

0.1 0.8

 .

Recall that the elements of Υ are Pr [Yit = y|Sit = s] (with Yit along the rows and Sit along the

columns). That means that the probability of classifying land use y = 1 when the true land cover

is actually s = 2 is just Pr [Yit = 1|Sit = 2] = 0.2. Correct classification probabilities here are

either 0.9 (for s = 1) and 0.8 (for s = 2), which are highly accurate when compared to typical

out-of-sample predictions in real data settings.

The hidden Markov model generates the observed transitions for Yit:

PY2|Y1 =

0.815 0.185

0.363 0.637

 , PY3|Y2 =

0.775 0.225

0.37 0.63

 , PY4|Y3 =

 0.72 0.28

0.472 0.528

 .

These transitions put much greater probabilities on the off-diagonals than the true transitions.

This implies excessive land cover changes. Frequency estimators of the transition probabilities for

Yit are consistent for PYt+1|Yt , and are therefore inconsistent for the true transitions PSt+1|St
.

To verify the performance of the proposed HMM corrections, based on the MD and EM esti-

mators, we generated samples with N = 100, N = 500, and N = 1000 spatial grid points, observed

for T = 4 time periods.18 For each sample size, we generate 50 Monte Carlo replications. In each

replication, we estimate the observed transitions for Yit using frequency estimators, and run both

MD and EM estimator starting from six randomly chosen initial values. The initial values for the

diagonals of the true PSt+1|St
and Υ matrices are i.i.d. uniform on [0.6, 0.98]. The initial values for

the first element of the initial distribution PS1 are drawn i.i.d. uniform on [.85, .95]. For the MD

18In a typical empirical application, the points might be arranged in a 100-by-100 grid. Our assumption of spatial
independence allows us to treat each point separately, simplifying the empirical analysis.

14



estimator we take the identity matrix as the weighting matrix, W = I.

5.2 Baseline Results

Table 1 presents the average bias, the standard deviation, and the mean-squared error across the

Monte Carlo replications (on the rows). For each parameter, we show results for the frequency

estimator, the MD, and the EM estimators (on the columns).

As expected, the performances of the MD and EM estimators in terms of the average bias and

mean-square errors are substantially better than the performance of the frequency estimator for

both the initial distribution of land cover and the transition rates. Naturally, both corrections

improve with the sample size, while the frequency estimator does not. The HMM corrections also

estimate the misclassification probabilities accurately.

As the table shows, the EM often dominates the MD estimator by having smaller biases. Also,

especially for smaller sample sizes, the EM has much smaller standard deviations than the MD

estimator. This is not surprising given that the EM estimator is a maximum likelihood estimator,

and so it is efficient. This can be seen graphically in Figure 2, where we show the distribution

across replications of the estimated transition probabilities and misclassification probabilities for

the first unobserved state, s = 1, using box and whisker plots. The true parameter value is marked

by a dotted line. The variability of the MD estimator suggests some caution when using it in small

samples. (These graphs slightly understate the observed variability of the MD estimator, since the

graph is truncated at .5 and some estimated values go above that.) Indeed, in our experience, the

greater standard deviation of the MD estimator (compared to the EM) implies a higher frequency of

estimated transition probabilities that are too close to, or exactly at, the boundary of the parameter

space. That happens more frequently when true transition probabilities are near zero or one.

While not shown in the table, the EM takes longer to converge (by factors between 6 and 42,

depending on the sample size). That is because the EM algorithm loops over the entire panel in its

E and M steps; by constrast, the minimum distance estimator loops over the entire panel only once

to compute frequency estimators of the joint distribution of Yit, and can then evaluate its objective

function quickly by looping only over time, as opposed to the entire panel.

We also verify the performance of the estimator with T = 5 and T = 6. Relative to our

T = 4 period baseline, we fix the transition probabilities for the first and last period and set the

transitions for the middle periods equal to each other.19 While the additional time periods require

19In other words, we set

PS2|S1
=

(
0.96 0.04
0.02 0.98

)
, PSt|St−1

=

(
0.9 0.1
0.02 0.98

)
,∀1 < t < T, and PST |ST−1

=

(
0.8 0.2
0.2 0.98

)
.
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the estimation of additional parameters, the larger number of time periods could help improve the

precision of the misclassification probability estimates. In Figure 3, we replicate the results from

Figure 2 with N = 1000 observations and T = 4, 5, and 6 time periods. As these graphs show, the

results are similar across the different number of time periods.

Two remarks about the performances and practical implementations are in order.

Remark 1. The MD estimator may suffer from an additional difficulty (though this one is relatively

less severe): if the observed joint distribution of Yt and Yt−1 ever includes a row or column of zeros

(which is more likely at smaller sample sizes, especially if S is large and includes rare land uses),

the matrix M̂Yt,Yt−1 will be singular, and the minimum distance objective function as stated in

equation (11) will be undefined. In this case, we would have to modify the definition of g1yt so

that M̂Yt,Yt−1 no longer needs to be inverted; this would require computing Υ−1 on each objective

function evaluation. This modification can be problematic in applications where the misclassifica-

tion probability matrix is close to singular, but that will not be the case if Yit is the output of an

accurate classifier.

Remark 2. The EM has an additional advantage over the MD if Yit is missing at random (e.g.

due to cloud cover): in this case, the EM algorithm can make full use of the entire panel, whereas

the frequency estimators M̂yt+1,Yt,Yt−1 have to be computed from the subset where Yit+1, Yit, and

Yit−1 are all non-missing. If we are in a setting where, for example, Yit is missing at random with

probability, say, 0.10, we will have to throw out approximately 1 − 0.93 = 0.271 of our data to

compute M̂yt+1,Yt,Yt−1 for the MD estimator. (A similar statement applies to M̂Yt,Yt−1 .)

These considerations suggest combining the MD and EM in practice, whenever possible, taking

into account their strengths. For instance, one could run the MD estimator first (which is fast),

and then use the MD estimate as an initial value for the (more efficient) EM estimator.

5.3 Varying Parameter Configurations

We now fix the sample size at N = 1000 and T = 4, and investigate the performance of the HMM

corrections for several different parameter configurations. In particular, we hold fixed the transition

probabilities of land use at the levels described before and vary the misclassification probabilities

for the hidden state s = 1. Then we hold fixed the misclassification probabilities and vary the

transition probability for state s = 1 in the last period.

Figure 4 presents the results for when we vary the misclassification probability for state 1,

Pr[Yit = 2|Sit = 1] (i.e., Υ(2, 1)), between 5 and 25 percent, while holding other parameters fixed.

The top panel shows the behavior of the estimates of the transition probabilities Pr[Sit+1 = 2|Sit =

1], for t = 1, 2, 3, and the bottom panel shows the behavior of the estimates of the misclassification
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probability Pr[Yit = 2|Sit = 1]. The lines are non-parametric loess regression lines with a shaded

95% confidence interval, where the data is fit from the different Monte Carlo simulations.

Intuitively, as the true misclassification probability increases, the frequency estimates of the

transitions increase for every period, even though the actual transition rate is constant. In other

words, the estimator predicts many more transitions than actually occur. In contrast, the EM and

the MD estimators predict a flatter transition rate. Also, the MD performance degrades for the

transition probabilities as the misclassification rate increases. When we look at the estimates of

the misclasification rate, the estimates are more similar for the EM and MD approaches, but the

EM is more biased as the true misclassification rate increases.

Figure 5 presents the results for when we vary the transition probability for hidden state s = 1

in the last period, Pr[Si4 = 2|Si3 = 1] (i.e., P3(1, 2)), between 5 and 40 percent. The format of

these graphs is similar to those in Figure 4. These graphs show that both EM and MD estimators

continue to perform well at estimating transitions and misclassifications with no notable differences

between them (aside from those discussed above).

6 Validation Exercise Using Land Cover Data

We now investigate the performance of the HMM approach using a unique validation data from

the Brazilian Agricultural Research Corporation (Embrapa).20 The data set contain information

on land use at 409 spatial points observed from 2006 to 2010, in the state of Mato Grosso, Brazil.

The state of Mato Grosso has attracted considerable interest from researchers and policy makers

both because it is a major center of agricultural production within Brazil’s Legal Amazon (a

bio-administrative unit covering the Brazilian Amazon biome) and because of the rapid land use

change there due to agricultural development. The field data were collected from private farms

in an area extending from (59o25′14′′W, 14o2′39′′S) [lower left] to (54o25′19′′W, 11o42′16′′S) [upper

right], whithin 14 municipalities in the most intensely cropped region of central Mato Grosso. The

data is unprecedented in spatial and temporal coverage for the state – and arguably in general.

(For details, see Coutinho et al. (2011) and Brown et al. (2013).)21

Not just these are high quality ground-level data for the Brazilian Legal Amazon (and in gen-

eral), they are especially useful for us because longitudinal ground-level data are crucial for val-

20We are grateful to Alexandre Camargo Coutinho and Daniel De Castro Victoria, who generously shared the
dataset.

21While Brown et al. (2013) use that data to obtain substantial progress towards more refined crop-specific
classification, we focus on land use transition estimates. Their data were collected via farmer or farm manager
interviews. The cropping practices were recorded for each individual sites and integrated into a Gegraphic Information
System (GIS) to be combined with the MODIS remote-sensing data (see more below). A total of 40 farmers or farm
managers were interviewed as research participants (Coutinho et al., 2011; Brown et al., 2013).
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idating our HMM approach. They allow us to observe true land use transition probabilities and

compare them to our estimates. We can also compare our HMM estimates of misclassification

probabilities with a direct estimate of misclassifications Pr [Yit|Sit]. No less important to empha-

size, longitudinal validation data are particularly difficult to obtain in practice; typically, validation

data are composed of a single or repeated cross-sections, which cannot be used to verify transition

probabilities for any given point i. The Embrapa data set therefore provide a unique opportunity

to test the performance of the HMM correction in practice.

Embrapa’s land cover data include various land use categories, but the vast majority of points

are either in crops or pasture. We therefore consider two land uses here, S = {crops, pasture}. A

small number of points do not fit into either of these categories (e.g. points classified as natural

vegetation); we drop these, leaving us with 403 unique spatial points, each point observed for one

to five years in 2006–2010 (unbalanced panel).

To implement a frequency estimator for land use transitions, we trained a machine-learning

classifier using remote-sensing data. Specifically, the remote-sensing data is from the sixteen-day

composite Terra MODIS 250m.22 MODIS data provide information of five variables that we used

for each pixel i: the reflectance of (i) near infrared (NIR), (ii) middle infrared (MIR), (iii) red,

and (iv) blue, as well as (v) the enhanced vegetation index (EVI). Given that MODIS collects

information for each pixel every sixteen days, each variable is recorded 23 times per year. In total,

we have 115 MODIS covariates per year – they correspond to our vector of variables Rit, and that

are presented in Figure 1. We use them to predict land use Yit = f(Rit) in each year. We merge the

MODIS data with the Embrapa ground-level data, considering the September-to-August harvest

years for consistency. In this way, the 2006 ground-level data, for instance, are merged with sensor

data from September 2005 to August 2006.

After merging the MODIS and the truth ground-level datasets, we randomly split the panel

data into a 50% training set and 50% test set. (The training set contains 201 cross-sectional points,

and the test set, 202 points.) Using the training data set, we predict the land cover based on

the gradient boosting method (GBM) (Hastie et al., 2009, Chapter 10). The GBM is a machine

learning technique for classification problems, based on multiple decision trees learning algorithms,

and that allows for an arbitrary differentiable loss function, in order to improve predictions from

single decision trees.23

22More precisely, the MOD13Q1 (Collection 5), with spatial resolution of 250 meters and 16-day composite interval,
obtained from the United States Geological Survey’s Land Processes Distributed Active Archive Center (LP DAAC).
We used one MODIS tile (h12v10), which covers the entire field study area. This is consistent with the analysis in
Brown et al. (2013).

23In our data, we select the number of trees in the GBM by cross-validation, which is a standard technique for
selecting tuning parameters for machine learning models. (We impose a maximum of 8000 trees allowed).
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Once we obtain the best fit of the GBM algorithm in the training data, we generate out-of-

sample predictions for the validation data (the “test” data set). The out-of sample performance of

our GBM classifications is shown in Table 2. This table presents the so-called “confusion matrix,”

which counts the number of correctly and incorrectly classified points. From these points we can

calculate the matrix Υ, with the misclassification probabilities.

The GBM algorithm has a high accuracy rate: Overall, it correctly predicts land use in 98% of

the points. It predicts crops almost perfectly, with probability 99.9% (i.e., Pr[Yit = crops | Sit =

crops] = 0.999), while it predicts pasture less precisely, but still with a high probability of 78.5%

(i.e., Pr[Yit = pasture | Sit = pasture] = 0.785).

Next, we implement the HMM method using the training data. Recall that the HMM approach

does not require the use of the validation data to correct the transitions (though that would be

possible in this particular context). Given that correct classification probabilities based on Table 2

are all well above 50%, the validation data suggests that Υ is indeed diagonally dominant, which

implies that Condition 3 presented in Section 3.2.1 holds – this increases our confidence that the

HMM is identified.

An important practical limitation here is that the number of points in pasture is small (see the

“Total” column in Table 2). To handle this issue of (relative) small data, we fit a model with time-

invariant transition probabilities. This reduces the total number of parameters to be estimated

from 11 to 5, and should increase the estimation precision.24

We now compare the true (time-invariant) transition probabilities from Embrapa ground-level

data, the frequency estimator (based on our GBM predictions Yit), and the HMM correction. The

ground-level true transition is

PSt+1|St
=

0.987 0.013

0.234 0.766

 .

This means that the probability that a point i with cropland at year t continues to be cropland

in the next year t + 1 is 98.7%; while the probability of switching to pasture equals 1.3%. The

probability of switching from pasture to crops is higher: 23.4%; and the probability of maintaining

pasture land is 76.6%.

The frequency estimator generates the following transition:

P̂Yt+1|Yt =

 0.98 0.02

0.393 0.607

 .

24In order to increase precision further, we estimate the HMM using the panel of test points from 2006 to 2016, i.e.
for more years than we observe Sit. Implicitly, we are assuming that the Embrapa land uses Sit follow a first-order
Markov chain whose transition probabilities remained fixed from 2006 to 2016.
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Similarly to the Monte Carlo simulations presented in Section 5, land use misclassification results

in higher probabilities on the off-diagonal elements, indicating excessive transitions in land use.

Transitions from crops to pasture here is 2%, instead of 1.3%; and transitions in the opposite

direction, from pasture to crops, is estimated to be 39.3%, instead of 23.4%. These transitions are,

respectively, 54% and 68% higher than the ground-level true transitions.

Next, we discuss the HMM corrections. We focus on the EM estimator because the Monte

Carlo simulations indicate that it performs better in finite (small) samples than the MD estimator.

Indeed, the MD parameter estimates for the transitions are exactly at the edges of [0, 1]. This is

consistent with the simulations in Section 5, where we learned that the minimum distance estimates

are more likely than the EM estimates to hit the boundary of the parameter space, particularly at

small sample sizes.

The EM estimates for the transitions are

P̂EM
St+1|St

=

0.988 0.012

0.197 0.803


Clearly, the EM estimates are substantially closer to the true ground-level transitions than the

frequency estimates.

Finally, the HMM estimates of the misclassification probabilities are

Υ̂EM =

0.999 0.22

0.001 0.78

 .

These estimates are close to the true misclassifications obtained from the out-of-sample predictions

based on the GBM classifications. (See the last column in Table 2.) As a matter of fact, they agree

almost exactly, which is remarkable given that the HMM is calculated using only the (training)

panel data with observed classifications {Yit}, and with no information on Sit.

The Embrapa dataset is large relative to typical validation data, especially for the Legal Ama-

zon. Yet, for the purposes of fitting an HMM and computing transition probabilities, it is relatively

small – particularly after splitting it into training and test sets, and taking into account that pasture

is relatively rare. In order to get a sense of the variability in the estimates, we take bootstrap sam-

ples from the test set, and refit the HMM on each sample. This produces a collection of transitions

probabilities Pb
St+1|St

, P̂b
Yt+1|Yt , P̂

b,EM
St+1|St

, where b indexes the bootstrap sample, for b = 1, ..., 100. In

the interest of speed, we hold the GBM training set fixed, i.e. the model that produces Yit is held

fixed throughout this exercise.

The results of the bootstrap exercise are shown in Figures 6 and 7. In the horizontal axis we
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show the transition probabilities in the bootstrapped test data, and in the vertical axis we show

the corresponding estimated transition probabilities. Each point corresponds to a single bootstrap

sample. The small number of pasture observations in the test panel is reflected by the considerable

variability in Pr[Sit+1 = pasture | Sit = pasture]. Nonetheless, we see that the frequency estimates

are on average too low, whereas the EM estimates appear to be much closer to the true transitions.

7 Conclusion

Satellite-based data allow researchers to access an unprecedent number of rich datasets with sub-

stantial spatial and temporal coverage. These data have proved useful in the study of a variety of

important phenomena, including the incidence of pollution levels, changes to urban areas, land use

changes, deforestation and regeneration processes, the evolution of biodiversity, among others. In

this paper, we contribute to the applied research by drawing from the econometrics literature on

measurement errors and proposing methods to estimate transition process, such as land use changes,

from remote-sensing data. Based on hidden Markov models, we show how to obtain estimates of

transition proababilities that account for misclassification, as opposed to traditional methods that

either ignore the problem altogether, propose ad-hoc solutions, or yet require (prohibitively) costly

validation data. The method that we propose avoid these issues since it is based on a formal set of

assumptions that can be analyzed on a case-by-case basis (avoiding therefore ad-hoc adjustments

on transitions), and it does not require ground-level truth validation data. We propose two estima-

tors based on the HMM framework, and investigate their performances in Monte Carlo simulation

studies, as well as in a validation study based on a high-quality ground-level land cover data in

a region of interest inside the Brazilian Legal Amazon that has been experiencing rapid land use

changes from agricultural expansion.

We consider two promising and interesting topics for future research: expanding the HMM cor-

rection to allow for spatial correlation in the grid points, and incorporating richer sets of covariates

when estimating transition probabilities, possibly based on semiparametric specifications.

21



References

Abercrombie, S. P. and M. A. Friedl (2016). Improving the consistency of multitemporal land cover

maps using a hidden markov model. IEEE Transactions on Geoscience and Remote Sensing 54,

703–713.

Alix-Garcia, J., A. Bartlett, and D. Saah (2013, 01). The landscape of conflict: IDPs, aid and

land-use change in Darfur. Journal of Economic Geography 13 (4), 589–617.

Andrews, D. W. K. (1999). Estimation when a parameter is on a boundary. Econometrica 67 (6),

1341–1383.

Assunção, J., R. McMillan, J. Murphy, and E. Souza-Rodrigues (2019). Optimal environmental

targeting in the Amazon rainforest. Technical report, NBER Working Paper 2536.

Baragwanath, K., R. Goldblatt, W. You, G. Hanson, and A. Khandelwal (2019). Detecting urban

markets with satellite imagery: An application to india. Technical report, Columbia University.

Bonan, G. B. (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits of

forests. Science 320 (5882), 1444–1449.

Bound, J., C. Brown, and N. Mathiowetz (2001). Measurement error in survey data. Handbook of

econometrics, 3705–3833.

Brown, J. C., J. H. Kastens, A. C. Coutinho, D. d. C. Victoria, and C. H. Bishop (2013). Classifying

multiyear agricultural land use data from mato grosso using time-series modis vegetation index

data. Remote Sensing of Environment 130, 39 – 50.

Burgess, R., M. Hansen, B. A. Olken, P. Potapov, and S. Sieber (2012). The political economy of

deforestation in the tropics. The Quarterly Journal of Economics 127(4), 1707–1754.

Costinot, A., D. Donaldson, and C. Smith (2016). Evolving comparative advantage and the impact

of climate change in agricultural markets: Evidence from 1.7 million fields around the world.

Journal of Political Economy 124 (1), 205–248.

Coutinho, A., D. d. C. Victoria, A. da Paz, J. Brown, and J. Kastens (2011). Dynamics of agriculture

in the soy production pole of the state of mato grosso. In Proceedings of the Brazilian Symposium

of Remote Sensing, Curitiba, Brasil, 30 abril – 5 maio, 2011, INPE (2011), pp. 6128–6135.

Czaplewski, R. L. (1992). Misclassification bias in areal estimates. Photogrammetric Engineering

& Remote Sensing 58 (2), 189–192.

22



Donaldson, D. and A. Storeygard (2016). The view from above: Applications of satellite data in

economics. Journal of Economic Perspectives 30, 171–198.

Foley, J. A., R. DeFries, G. P. Asner, C. Barford, G. Bonan, S. R. Carpenter, F. S. Chapin, M. T.

Coe, G. C. Daily, H. K. Gibbs, J. H. Helkowski, T. Holloway, E. A. Howard, C. J. Kucharik,

C. Monfreda, J. A. Patz, I. C. Prentice, N. Ramankutty, and P. K. Snyder (2005). Global

consequences of land use. Science 309 (5734), 570–574.

Fowlie, M., E. Rubin, and R. Walker (2019, May). Bringing satellite-based air quality estimates

down to earth. AEA Papers and Proceedings 109, 283–88.

Friedl, M. A., D. Sulla-Menashe, B. Tan, A. Schneider, N. Ramankutty, A. Sibley, and X. Huang

(2010). Modis collection 5 global land cover: Algorithm refinements and characterization of new

datasets. Remote Sensing of Environment 114 (1), 168 – 182.

Geller, G. N., P. N. Halpin, B. Helmuth, E. L. Hestir, A. Skidmore, M. J. Abrams, N. Aguirre,

M. Blair, E. Botha, M. Colloff, T. Dawson, J. Franklin, N. Horning, C. James, W. Magnusson,

M. J. Santos, S. R. Schill, and K. Williams (2017). Remote Sensing for Biodiversity. Springer,

Cham.

Gennaioli, N., R. La Porta, F. Lopez-de Silanes, and A. Shleifer (2012, 11). Human Capital and

Regional Development *. The Quarterly Journal of Economics 128 (1), 105–164.

Goldblatt, R., M. F. Stuhlmacher, B. Tellman, N. Clinton, G. Hanson, M. Georgescu, C. Wang,

F. Serrano-Candela, A. K. Khandelwal, W.-H. Cheng, and R. C. Balling (2018). Using landsat

and nighttime lights for supervised pixel-based image classification of urban land cover. Remote

Sensing of Environment 205, 253 – 275.

Goldblatt, R., W. You, G. Hanson, and A. Khandelwal (2016). Detecting the boundaries of urban

areas in india: A dataset for pixel-based image classification in google earth engine. Remote

Sensing 8 (8), 634.

Hastie, T., R. Tibshirani, and J. Friedman (2009). The Elements of Statistical Learning: Data

Mining, Inference, and Prediction (2 ed.). Springer Series in Statistics. New York, NY, USA:

Springer New York Inc.

Henderson, J. V., T. Regan, and A. J. Venables (2016). Building the city: Sunk capital, sequencing,

and institutional frictions. Technical report, CEPR Discussion Paper 11211.

23



Henderson, J. V., A. Storeygard, and D. N. Weil (2012, April). Measuring economic growth from

outer space. American Economic Review 102 (2), 994–1028.

Holmes, T. and S. Lee (2009). Economies of density versus natural advantage: Crop choice on the

back forty. Review of Economics and Statistics 94 (1), 1–19.

Hu, Y. (2017). The econometrics of unobservables: Applications of measurement error models in

empirical industrial organization and labor economics. Journal of Econometrics 200 (2), 154–168.

Kudamatsu, M., T. Persson, and D. Stromberg (2016). Weather and infant mortality in africa.

Technical report, IIES.

Marx, B., T. M. Stoker, and T. Suri (2019). There is no free house: Ethnic patronage in a Kenyan

slum. American Economic Journal Applied Economic (forthcoming).

McLachlan, G. J. and D. Peel (2000). Finite Mixture Models. John Wiley & Sons.

Michalopoulos, S. and E. Papaioannou (2013). Pre-colonial ethnic institutions and contemporary

african development. Econometrica 81 (1), 113–152.

Newey, W. K. and D. McFadden (1994). Large sample estimation and hypothesis testing. Handbook

of Econometrics IV, 2113–2241.

Nordhaus, W. and X. Chen (2014, 05). A sharper image? Estimates of the precision of nighttime

lights as a proxy for economic statistics1. Journal of Economic Geography 15 (1), 217–246.

Scott, P. T. (2013). Dynamic discrete choice estimation of agricultural land use. Working Paper .

van Handel, R. (2008). Hidden Markov Models: Lecture notes. https://www.princeton.edu/

~rvan/orf557/hmm080728.pdf. [Online; accessed 2017-06-06].

24

https://www.princeton.edu/~rvan/orf557/hmm080728.pdf
https://www.princeton.edu/~rvan/orf557/hmm080728.pdf


Table 1: Baseline Monte Carlo Simulation Results

N=100 N=500 N=1000

Freq MD EM Freq MD EM Freq MD EM

Bias -0.071 -0.077 -0.033 -0.068 -0.029 -0.009 -0.072 -0.009 -0.008
PS1 = .9 s.d. 0.038 0.168 0.059 0.015 0.076 0.025 0.012 0.037 0.021

RMSE 0.080 0.184 0.067 0.070 0.081 0.027 0.073 0.038 0.022

Bias 0.010 -0.025 -0.004 -0.008 -0.001 -0.004
Υ(2, 1) = .1 s.d. 0.058 0.033 0.018 0.013 0.015 0.012

RMSE 0.058 0.041 0.019 0.016 0.015 0.012

Bias 0.292 -0.035 0.065 -0.018 -0.001 -0.022
Υ(1, 2) = .2 s.d. 0.333 0.115 0.196 0.058 0.096 0.042

RMSE 0.442 0.119 0.206 0.061 0.096 0.047

Bias 0.102 0.086 0.023 0.106 0.031 0.009 0.105 0.006 0.005
P1(1, 2) = .04 s.d. 0.036 0.194 0.048 0.017 0.082 0.022 0.013 0.041 0.016

RMSE 0.108 0.212 0.053 0.107 0.088 0.024 0.106 0.042 0.017

Bias 0.552 0.229 0.195 0.542 0.065 0.086 0.540 0.065 0.082
P1(2, 1) = .02 s.d. 0.123 0.274 0.196 0.057 0.122 0.114 0.042 0.104 0.088

RMSE 0.565 0.356 0.276 0.545 0.138 0.143 0.542 0.123 0.120

Bias 0.090 0.212 0.022 0.091 0.049 0.008 0.089 0.004 0.001
P2(1, 2) = .1 s.d. 0.047 0.341 0.070 0.021 0.161 0.026 0.015 0.051 0.020

RMSE 0.101 0.401 0.073 0.093 0.168 0.027 0.090 0.051 0.020

Bias 0.464 0.138 0.086 0.475 0.046 0.048 0.469 0.038 0.035
P2(2, 1) = .02 s.d. 0.120 0.233 0.140 0.055 0.080 0.076 0.036 0.065 0.052

RMSE 0.479 0.270 0.163 0.478 0.092 0.089 0.471 0.075 0.063

Bias 0.066 0.246 0.010 0.065 0.081 -0.003 0.071 0.014 0.002
P3(1, 2) = .2 s.d. 0.058 0.387 0.083 0.024 0.251 0.039 0.016 0.116 0.025

RMSE 0.088 0.456 0.083 0.070 0.262 0.038 0.073 0.116 0.025

Bias 0.355 0.099 0.091 0.363 0.034 0.047 0.363 0.027 0.038
P3(2, 1) = .02 s.d. 0.105 0.233 0.131 0.040 0.073 0.062 0.032 0.057 0.042

RMSE 0.370 0.252 0.159 0.365 0.080 0.078 0.364 0.063 0.056

Table 2: Confusion Matrix based on Embrapa Validation Data

GBM Classification (Yit) Percentage of

Embrapa Data (Sit) Crops Pasture Total Correctly Predicted
Crops 857 1 858 0.999

Pasture 17 62 79 0.785
Total 874 63 937
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(a) Transition Probability

(b) Misclassification Probability

Figure 2: Baseline Monte Carlo Simulation Results (Unobserved State 1)
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(a) Transition Probability

(b) Misclassification Probability

Figure 3: Baseline Monte Carlo Simulation Results (Unobserved State 1

27



(a) Transition Probability

(b) Misclassification Probability

Figure 4: Monte Carlo Results for Varying Misclassification Probabilities28



(a) Transition Probability

(b) Misclassification Probability

Figure 5: Monte Carlo Results for Varying Transition Probabilities29



Figure 6: Validation: HMM and GBM Estimates of Pasture Transition Probability

Figure 7: Validation: HMM and GBM Estimates of Crop Transition Probability
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A Appendix: Mathematical Derivation of Useful Identities

Under the HMM assumptions, the joint distribution of (Yit, Yit−1) satisfies

Pr [Yit, Yit−1] =
∑
s∈S

Pr [Sit = s, Yit−1] Pr [Yit|Sit = s] . (13)

Similarly, the joint distribution of (Yit+1, Yit) is such that

Pr [Yit+1, Yit] =
∑
s′∈S

∑
s∈S

Pr
[
Yit+1|Sit+1 = s′

]
Pr
[
Sit+1 = s′|Sit = s

]
×Pr [Yit|Sit = s] Pr [Sit = s]

=
∑
s′∈S

∑
s∈S

Pr
[
Yit+1|Sit+1 = s′

]
Pr
[
Sit+1 = s′, Sit = s

]
Pr [Yit|Sit = s] . (14)

Finally, the joint distribution of (Yit+1, Yit, Yit−1) satisfies

Pr [Yit+1, Yit, Yit−1] =
∑
s∈S

Pr [Yit+1|Sit = s] Pr [Yit|Sit = s] Pr [Yit−1, Sit = s] , (15)

because

Pr [Yit+1, Yit, Yit−1]

=
∑
s′∈S

∑
s∈S

Pr
[
Yit+1, Yit, Yit−1, Sit = s′, Sit−1 = s

]
=

∑
s′∈S

∑
s∈S

Pr
[
Yit+1|Yit, Sit = s′

]
Pr
[
Yit, Sit = s′|Yit−1, Sit−1 = s

]
Pr [Yit−1, Sit−1 = s]

=
∑
s′∈S

∑
s∈S

Pr
[
Yit+1|Sit = s′

]
Pr
[
Yit|Sit = s′

]
Pr
[
Sit = s′|Sit−1 = s

]
Pr [Yit−1, Sit−1 = s]

=
∑
s′∈S

Pr
[
Yit+1|Sit = s′

]
Pr
[
Yit|Sit = s′

](∑
s∈S

Pr
[
Sit = s′|Sit−1 = s

]
Pr [Yit−1, Sit−1 = s]

)
=

∑
s∈S

Pr
[
Yit+1|Sit = s′

]
Pr
[
Yit|Sit = s′

]
Pr
[
Yit−1, Sit = s′

]
.

In matrix notation, equations (13)–(15) are equivalent to the equations (4)–(6) presented in the

main text.

B Appendix: The EM Algorithm

We now briefly explain the EM algorithm. To simplify notation, let θ represent the collection

of HMM parameters, i.e. θ is a list containing Pr [Si1], Pr [Sit+1|Sit], and Pr [Yit|Sit], for all t =
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1, ..., T − 1. Let y denote the entire panel of observations {yit}; similarly, let s denote values of the

hidden state for the entire panel. Define the log likelihood

l (θ) ≡ ln Pr [Y = y; θ] (16)

and let

J
(
θ, θ′

)
≡
∑
s

Pr
[
S = s|Y = y; θ′

]
ln

{
Pr [Y = y, S = s; θ ]

Pr [Y = y, S = s; θ′ ]

}
. (17)

The EM algorithm begins with an initial guess θ(1) then alternates between steps 1 and 2 below

for iterations j = 1, 2, . . . until convergence:

1. The expectation (E) step: compute the posteriors Pr
[
S|Y = y; θ(j)

]
2. The maximization (M) step: set θ(j+1) to arg maxθ J

(
θ, θ(j)

)
The EM algorithm produces a sequence of parameter estimates for which the log likelihood

l
(
θ(j)
)

is monotonically increasing. In problems where the likelihood function is non-concave, this

means the algorithm could converge to a local maximum.

A key aspect of the E-step of the EM algorithm is the Baum-Welch algorithm. It efficiently

calculates probabilities of the form

Pr [Sit|Yi1, Yi2, . . . , YiT ] ,

where T ≥ t. In words, the model allows us to condition on a long sequence of noisy land use

classifications at a given spatial point, and make probabilistic statements about the point’s true

land use at any period in that history. This is valuable if we are interested in land cover at a

specific point: the fact that we condition on the entire sequence Yi1, Yi2, . . . YiT can potentially

improve predictions when compared to classifiers that use only contemporaneous data to predict

land use. For instance, suppose we have 15 years of data at a particular spatial point, and that

the land use set is S = {forest,deforested}. Imagine that our land use prediction model outputs

Yit = forest for the first 10 years, followed by deforestation for a single year, followed by four years

of forest. Intuitively, if our classifier is reasonably accurate but imperfect, we would guess that the

isolated deforestation prediction is erroneous (because transitions are rare), and that the true land

use was forest for the entire 15 years. The HMM naturally accomplishes this sort of smoothing

by explicitly modeling the probability of errors in predicted land use, along with the transition

probabilities in the true underlying state – and with no heuristics nor ad-hoc adjustments involved.
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The amount of smoothing depends on the estimated parameters – in the edge cases where the off-

diagonals of Υ are zero, for example, we do not need any smoothing. Identifying the parameters

from observed data is therefore crucial in applications.

In our application, the M step of the EM algorithm has a closed-form solution. Denote the

posterior probabilities by πit[k] ≡ Pr[Sit = k|Y = y; θ(j)] and πit[k, l] ≡ Pr[Sit = k, Sit+1 = l|Y =

y; θ(j)]; these can be computed in an efficient forward-backward pass over time using the Baum-

Welch algorithm (i.e., the E step), and the calculations can be done in parallel across spatial points

given our assumption of spatial independence. The updated values of θ are

µ(j+1)[k] =

∑
i πi1[k]∑
i,s πi1[s]

P
(j+1)
t [k, l] =

∑
i πit[k, l]∑
i πit[k]

Υ(j+1)[y, k] =

∑
i,t:Yit=y

πit[k]∑
i,t πit[k]

(18)

See van Handel (2008) for a reference on the EM algorithm applied to discrete HMMs. Extending

the EM algorithm to deal with cases where Yit is missing at random (e.g. due to cloud cover) is

straightforward: in the M step update to Υ, the sums in both the numerator and denominator are

restricted to cases where Yit is non-missing. Modifying the Baum-Welch algorithm (i.e. the E step)

to deal with missingness-at-random in Yit is equally simple.

C Online Appendix: A Policy-Relevant Illustrative Example

In this Appendix, we consider a policy-relevant illustration of how misclassification probabilities

can affect conservation policies, and lead to inefficient outcomes.

Consider the problem faced by a regulator in a country with two regions of the same size,

A and B, each of which is covered by land whose state is in S = {forest, deforested}. Imagine

that the regulator has sufficient resources to protect only a fixed area of forest (e.g. by increasing

enforcement in a 500 km2 area), with the goal of preventing as much deforestation as possible: she

can declare a new protected area either in region A or in region B (but not both), and she would

therefore like to identify the region with the larger deforestation rate.25 Obtaining ground truth

panel data
{
SAit
}

and
{
SBit
}

would be prohibitively expensive; instead, the regulator has access

only to noisy land use classifications
{
Y A
it

}
and

{
Y B
it

}
based on remotely-sensed data.

Suppose Yit, Sit satisfy the hidden Markov model assumptions presented in the main text, with

25We take as given that the regulator’s action is effective, and moreover that the amount of deforestation it prevents
is increasing in the deforestation probability.
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the following time-homogeneous transition probabilities and misclassification probabilities:26

PA =

0.95 0.05

0.01 0.99

 PB =

 0.9 0.1

0.01 0.99


ΥA =

0.9 0.1

0.1 0.9

 ΥB =

0.98 0.02

0.02 0.98

 .

The deforestation probability Pr[Sit+1 = deforested | Sit = forest] is 0.05 in region A and 0.1

in region B. Given the large differences in the deforestation rates, the regulator’s problem might

appear straightforward: It is better to protect region B to conserve a larger area of forest.

Notice, however, that the misclassification probabilities differ across the two regions, with region

A having a lower deforestation probability but a larger misclassification rate. Misclassifications

cause observed transition probabilities to be erroneously high, and, in this case, the difference

between ΥA and ΥB is large enough to push the mismeasured deforestation rate for region A

above the observed deforestation rate for B. In a simulation using panels of 10000 points per region

(imagine a 100-by-100 raster of spatial points), each of which is observed for 3 years (with an initial

distribution Pr[Si1 = forest] = 0.7 in both regions), the frequency estimates obtained from the

transitions in Yit are

P̂Freq
A =

0.82 0.18

0.25 0.75

 P̂Freq
B =

0.874 0.126

0.059 0.941

 .

Clearly, based on these estimates, the regulator would decide to protect area A, instead of B.

By contrast, the EM estimates of the transition probabilities are highly accurate and produce

the correct ordering between the two regions, with region A’s estimated deforestation rate below

that for region B:

P̂EM
A =

0.943 0.057

0.019 0.981

 P̂EM
B =

 0.9 0.1

0.002 0.998

 .

In this example, a regulator following the frequency estimator approach to transition probability

estimation would focus enforcement resources on the wrong region, whereas a regulator using

the HMM strategy would reach the correct decision, and would therefore prevent twice as much

deforestation.

In the more general setting where the initial distribution over Sit varies by region, an approach

26In order to keep the presentation straightforward, we drop the time subscript and assume that transition prob-
abilities are time-homogeneous within each region.
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based on looking just at the marginal distribution of Yit could easily fail: one region might have a

very large forest share but a low deforestation probability; another region might have a lower forest

share but a much higher deforestation probability. If the regulator has only enough resources to

protect a fixed area of forest (smaller than the total forest area in either region), she would want

to focus enforcement on the region whose current deforestation probability is largest: this could be

handled by an HMM with time-varying deforestation probabilities, whereas focusing enforcement

on the region with the largest decrease in Pr[Yit = forest] could lead to the wrong decision.

Finally, note that in problems involving N regions, if misclassification probabilities vary spa-

tially, a correction based on validation data would require N separate ground truth datasets, which

may be extremely expensive and time-consuming, whereas the HMM approach could be applied

using a single classifier trained on a single training set, with Υ allowed to vary by region, in order

to inform the regulator.
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